Skip to content

Why are Antioxidants so Important for true Health from Avensole Winery Temecula Calif

April 9, 2017

Why are Antioxidants so Important for true Health

Cells may function poorly or die if this occurs. To prevent free radical, damage the body has a defense system of antioxidants. Antioxidants are molecules which can safely interact with free radicals and terminate the chain reaction before vital molecules are damaged.

WebMed research site

Antioxidants protect the body from damage caused by harmful molecules called free radicals. Many experts believe this damage is a factor in the development of blood vessel disease (atherosclerosis), cancer, and other conditions.
Role of antioxidants in health maintenance. PubMed

Science research site
https://www.ncbi.nlm.nih.gov/pubmed/7898413

The body’s trillion or so cells face formidable threats, from lack of food to infection with a virus. Another constant threat comes from nasty chemicals called free radicals. They are capable of damaging cells and genetic material. The body generates free radicals as the inevitable byproducts of turning food into energy. Others are in the food you eat and the air you breathe. Some are generated by sunlight’s action on the skin and eyes.

free radicals

Free radicals come in many shapes, sizes, and chemical configurations. What they all share is a voracious appetite for electrons, stealing them from any nearby substances that will yield them. This electron theft can radically alter the “loser’s” structure or function. Free radical damage can change the instructions coded in a strand of DNA. It can make a circulating low-density lipoprotein (LDL, sometimes called bad cholesterol) molecule more likely to get trapped in an artery wall. Or it can alter a cell’s membrane, changing the flow of what enters the cell and what leaves it.

We aren’t defenseless against free radicals. The body, long used to this relentless attack, makes scads of molecules that quench free radicals as surely as water douses fire. We also extract free-radical fighters from food. These defenders are often lumped together as “antioxidants.” They work by generously giving electrons to free radicals without turning into electron-scavenging substances themselves.

There are hundreds, probably thousands, of different substances that can act as antioxidants. The most familiar ones are vitamin C, vitamin E, beta-carotene, and other related carotenoids, along with the minerals selenium and manganese. They’re joined by glutathione, coenzyme Q10, lipoic acid, flavonoids, phenols, polyphenols, phytoestrogens, and many more.

But using the term “antioxidant” to refer to substances is misleading. It is really a chemical property, namely, the ability to act as an electron donor. Some substances that act as antioxidants in one situation may be prooxidants—electron grabbers—in a different chemical milieu. Another big misconception is that antioxidants are interchangeable. They aren’t. Each one has unique chemical behaviors and biological properties. They almost certainly evolved as parts of elaborate networks, with each different substance (or family of substances) playing slightly different roles. This means that no single substance can do the work of the whole crowd.

This means they all act as a team, Dr. Colin Campbell find this out to be true in his decades of research and wrote about it in his book The China Study he says, you cannot isolate antioxidants and expect it to do the job.

Here is an explanation why antioxidant supplements really do not work, and why you should get all your antioxidants from fresh organic fruits and vegetables and from drinking hydrogen rich water which is the most powerful antioxidant in existence, you cannot eat enough fruits and vegetables per day to match one 12 oz glass of hydrogen rich water.

Be sides it is the fastest and simplest way to get your antioxidants and you are also hydrating your cells at the cellular level daily.

Antioxidants came to public attention in the 1990s, when scientists began to understand that free radical damage was involved in the early stages of artery-clogging atherosclerosis and may contribute to cancer, vision loss, and a host of other chronic conditions. Some studies showed that people with low intakes of antioxidant-rich fruits and vegetables were at greater risk for developing these chronic conditions than were people who ate plenty of these fruits and vegetables. Clinical trials began testing the impact of single substances, especially beta-carotene and vitamin E, as weapons against heart disease, cancer, and the like.

Even before the results of these trials were in, the media, and the supplement and food industries began to hype the benefits of “antioxidants.” Frozen berries, green tea, and other foods labeled as being rich in antioxidants began popping up in stores. Supplement makers touted the disease-fighting properties of all sorts of antioxidants.

The trials were mixed, but most have not found the hoped-for benefits. Most research teams reported that vitamin E and other antioxidant supplements didn’t protect against heart disease or cancer (18) One study even showed that taking beta-carotene may actually increase the chances of developing lung cancer in smokers. On the other hand, some trials reported benefits; for example, after 18 years of follow-up, the Physicians’ Health Study found that taking beta-carotene was associated with a modest reduction in the rate of cognitive decline. (1)

These mostly disappointing results haven’t stopped food companies and supplement sellers from banking on antioxidants. Indeed, antioxidant supplements represent a $500 million dollar industry that continues to grow. Antioxidants are still added to breakfast cereals, sports bars, energy drinks, and other processed foods, and they are promoted as additives that can prevent heart disease, cancer, cataracts, memory loss, and a host of other conditions.

Often the claims have stretched and distorted the data: While it’s true that the package of antioxidants, minerals, fiber, and other substances found naturally in fruits, vegetables, and whole grains helps prevent a variety of chronic diseases, it is unlikely that high doses of antioxidants can accomplish the same feat.

Studies of Antioxidants and Disease Prevention: Little Supportive Evidence Randomized, placebo-controlled trials—which, when performed well, provide the strongest evidence—offer little support that taking vitamin C, vitamin E, beta-carotene, or other single antioxidants provides substantial protection against heart disease, cancer, or other chronic conditions. The results of the largest such trials have been mostly negative.

Heart Disease and Antioxidants Vitamin E, beta-carotene, and other so-called antioxidants aren’t the silver bullet against heart disease and stroke that researchers were hoping for. Although the final chapter has not been written on vitamin E.

In the Women’s Health Study, 39,876 initially healthy women took 600 IU of natural source vitamin E or a placebo every other day for 10 years. At the study’s end, the rates of major cardiovascular events and cancer were no lower among those taking vitamin E than they were among those taking the placebo. However, the trial did observe a significant 24 percent reduction in total cardiovascular mortality.

Although this was not a primary endpoint for the trial, it nevertheless represents an extremely important outcome.

Earlier large vitamin E trials, conducted among individuals with previously diagnosed coronary disease or at high risk for it, generally showed no benefit. In the Heart Outcomes Prevention Evaluation (HOPE) trial, the rates of major cardiovascular events were essentially the same in the vitamin E (21.5 percent) and placebo (20.6 percent) groups, although participants taking vitamin E had higher risks of heart failure and hospitalization for heart failure. In the Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico (GISSI) trial, the results were mixed but mostly showed no preventive effects after more than three years of treatment with vitamin E among 11,000 heart attack survivors. However, some studies suggest potential benefits among certain subgroups. A recent trial of vitamin E in Israel, for example, showed a marked reduction in coronary heart disease among people with type 2 diabetes who have a common genetic predisposition for greater oxidative stress.

A 2014 study from the Journal of Respiratory Research found that different isoforms of vitamin E (called tocopherols) had opposing effects on lung function.

• The study analyzed data from the Coronary Artery Risk Development in Young Adults (CARDIA) cohort and measured serum levels of alpha and gamma tocopherol in 4,526 adults
• Lung function was tested using spirometric parameters- Higher parameters are indicative of increased lung function, lower parameters are indicative of decreased lung function
• The study found that higher serum levels of alpha tocopherol were associated with higher spirometric parameters and that high serum levels of gamma tocopherol were associated with lower spirometric parameters.
• Though the study is observational in nature it confirmed the mechanistic pathway of alpha and gamma tocopherol in mice studies
Beta-carotene, meanwhile, did not provide any protection against heart disease or stroke, as demonstrated by the Physicians’ Health Study.

What about combinations? The findings are complicated and not entirely clear. In the Supplementation en Vitamines et Mineraux Antioxydants (SU.VI.MAX) study, 13,017 French men and women took a single daily capsule that contained 120 milligrams of vitamin C, 30 milligrams of vitamin E, 6 milligrams of beta-carotene, 100 micrograms of selenium, and 20 milligrams of zinc, or a placebo, for seven and a half years. The vitamins had no effect on overall rates of cardiovascular disease.

In the Women’s Antioxidant Cardiovascular Study, vitamin E, vitamin C, and/or beta-carotene had much the same effect as a placebo on myocardial infarction, stroke, coronary revascularization, or cardiovascular death, although there was a modest and significant benefit for vitamin E among women with existing cardiovascular disease.
Cancer and Antioxidants

When it comes to cancer prevention, the picture remains inconclusive for some antioxidant supplements. Few trials have gone on long enough to provide an adequate test for cancer. In the long-term Physicians’ Health Study, cancer rates were similar among men taking beta-carotene and among those taking a placebo. Other trials have also largely showed no effect, including HOPE. The SU.VI.MAX trial showed a reduction in cancer risk and all-cause mortality among men taking an antioxidant cocktail but no apparent effect in women, possibly because men tended to have low blood levels of beta-carotene and other vitamins at the beginning of the study. A randomized trial of selenium in people with skin cancer demonstrated significant reductions in cancer and cancer mortality at various sites, including colon, lung, and prostate. The effects were strongest among those with low selenium levels at baseline.
The Bottom Line on Antioxidants and Disease Prevention

Free radicals contribute to chronic diseases from cancer to heart disease and Alzheimer’s disease to vision loss. This doesn’t automatically mean that substances with antioxidant properties will fix the problem, especially not when they are taken out of their natural context. The studies so far are inconclusive, but generally don’t provide strong evidence that antioxidant supplements have a substantial impact on disease. But keep in mind that most of the trials conducted up to now have had fundamental limitations due to their relatively short duration and having been conducted in persons with existing disease. That a benefit of beta-carotene on cognitive function was seen in the Physicians’ Health Follow-up Study only after 18 years of follow-up is sobering, since no other trial has continued for so long. At the same time, abundant evidence suggests that eating whole fruits, vegetables, and whole grains—all rich in networks of antioxidants and their helper molecules—provides protection against most all diseases including cancer.

You most get your antioxidants from fresh raw organic foods free of all chemicals, how do we clean the oil pesticides and herbicides off all or foods with strong 11.5 alkalized water check it out.

Kangen-11.5 strong alkaline water removes pesticides from our foods/organic K8

Next step you need to change the type of water your family is drink to hydrogen rich water with active hydrogen the most powerful antioxidant in existence even more powerful then and of the vegetable and fruit antioxidants, science has proved this to be true with hundreds of scientific case studies, even doctors can no longer deny this as being true check it out.
https://altered-states.net/barry/newsletter456/scientific.htm

Those of you that think bottle water or your home filter water or that so called alkaline water you are buying at the health food store are healthy for you, you might want to check this out http://www.ninepointfive.com

Msg me let us point you in the right direction you will also find out how you and your family can try hydrogen rich water for free no obligations just contact me.

Bill & Emily Mabry
Wellness Coach/Strength and Conditioning Coach/CMHS
http://www.drinknatureswater@gmail.com
Free Ebook http://www.drinknatureswater.com

Advertisements

From → Uncategorized

Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

%d bloggers like this: